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Utilizing this nature, we expect divertor
functions for the heat removal, ash exhaust,
and impurity shielding (retention) in fusion
reactors, such as ITER and DEMO.

Edge Plasma Research for Fusion

Since SOL/divertor plasmas attach walls
directly, plasma particles and heat escape
to the walls mainly along magnetic field
lines (open field).

Hot plasma in the core region is transported
across magnetic field lines to the peripheral
region (closed field), and brought out to the
scrape-off-layer region.



       Large heat flux to PFCs in fusion reactor

Large heat flux to the plasma facing components (PFCs)
in the fusion reactor, especially to the divertor plates,
is worried about the most from the viewpoint of lifetime
reduction of PFCs.
Commercial tokamak reactor with 1 GW electric power
Fusion power ~ 3 GW and Heating power 600 - 700 MW
For radiation power ~ 85 % : Power to plates ~ 100 MW
For heat flux width ~ 10 cm: Heat load to plates ~ 15 MW/m2

 ( R ~ 7 m, Lplates ~ 60 m, Splates ~ 6 m2 )
Heat conductivity of SS / W :   20 / 160 W/m⋅°K /
Melting  point  of  SS / W :   1400 / 3400 °C
Maximum heat load of SS / W : 2 / 40 MW/m2

       (with 1 cm thickness)
  From the engineering viewpoint, allowable limit is smaller
  than these maximum values.



        Sputtering of PFC materials by particle flux

Large particle flux erodes PFC materials in the fusion reactor.
Small sputtering yield is desirable.
Lower  plasma temperature makes the sputtering yield smaller.

How to achieve high radiative cooling and detachment
of the divertor plasma in the fusion reactor?



Understanding of Burning Plasma
Complex system for SOL-divertor
       ρ*, β, ν* + lA&M-mfp, Lrad(Te)

Need of Numerical Simulation
  SOLPS, EDGE2D, UEDGE, SONIC,
  EMC3 etc

Analysis / Prediction of
Heat and Particle Control by Divertor
       Present devices,
       Future reactors (ITER, DEMO)

Importance of Edge Plasma Simulation
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Multi-element Integrated Simulation for SOL-divertor plasmas
SOLPS (B2/EIRENE), EDGE2D/NIMBUS, 

SONIC (SOLDOR/NEUT2D), EMC3/EIRENE etc,
 

where plasma fluid equations and 
neutral-particle Monte-Carlo tracking are coupled 

in the complex geometries of magnetic configuration and wall 

fluid model

MC model



2. Multi-element Integrated SOL-Divertor Simulation

H. Kawashima, K. Shimizu, T. Takizuka, et al., Plasma Fusion Res. 1 (2006) 031.
H. Kawashima, K. Shimizu, T. Takizuka, Plasma Phys. Control. Fusion 49 (2007) S77.

Plasma
Fluid

SOLDOR

Plasma 2D Fluid Code
Neutral MC Code
Impurity MC Code

SONIC
SOLDOR
NEUT2D
IMPMC

   An example of  
integrated SOL-divertor code
       developed in JAEA



          Fluid equations for SOL-divertor plasma

Particle transport
    ∂n /∂t + ∇// nV// + ∇⊥ nv⊥ = S    ( v⊥  consist of vdrift, vpinch, and -D ∇⊥ ln n )
Momentum transport
    ∂mi nV// /∂t + ∇// (mi nV//

2 + pi + pe + πi ) + ∇⊥ mi nV//v⊥ = SM + ∇⊥ n χM ∇⊥V//

Ion energy transport
    ∂εi  /∂t + ∇// (   mi nV//

2 +    pi + πi ) V// + ∇⊥ εiv⊥
       = enV//E // + Qi + n (Te - Ti)/τeq + ∇// κi// ∇// Ti + ∇⊥ n χi ∇⊥Ti

Electron energy transport
    ∂εe /∂t + ∇//    pe V// + ∇⊥ εev⊥

       = (j// - enV// ) E // + Qe - n (Te - Te)/τeq + ∇// κe// ∇// Te + ∇⊥ n χe ∇⊥Te

Ohm’s law
    E // = - (1/en) ∇// pe - (0.71/e) ∇// Te Qe + j// /σ//

Current continuation
    ∇// j // + ∇⊥ j⊥ = 0
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      Simple steady-state solution for the 2D profile of n and V//
Particle balance equation and Momentum balance equation
      ∇// nV// - ∇⊥ D ∇⊥ n = 0   ,        ∇// (mi nV//

2 + pi + pe ) = 0

Radial decay of n ~ exp (- r /λn)
      ∂/∂s (nV//) - (D /λn

2) n = 0
Assume uniform temperature, and Te + Ti = mi Cs

2

      ∂/∂s (V//
2 + Cs

2 ) n = 0  :   n = n(0) Cs
2

 / (V//
2 + Cs

2 )
Particle balance equation becomes
      ∂/∂s {V// / (V//

2 + Cs
2 )} - (D /λn

2) / (V//
2 + Cs

2 ) = 0
       { - 1 + 2Cs

2
 / (V//

2 + Cs
2 ) } ∂V// = (D /λn

2) ∂s
Parallel profile of V// (s)
      2 tan-1

 (V// / Cs)  - (V// / Cs)  = (D /λn
2

 Cs) s
Boundary condition for V// at the divertor plate s = L,
 V// = Cs, gives the density decay length λn

         λn
  =  (D L / 0.57Cs)1/2

                    ex. T = 100 eV, D = 0.5 m2/s, L = 100 m  :   λn
 = 3 cm



SOLDOR code

JT-60U W-shaped divertor 

N! =  37  (r/a > 0.95)
N" = 120 
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   2D Plasma Fluid modeling (w/o impurity)
  -  Complex divertor geometry
      • Finite volume method
      • Boundary-fitted grids
      • Fine meshes near divertor plate (≤ 2mm)
  -  Strong nonlinearity of equations
      • Linearization by Newton-Raphson method
  -  2D finite difference equations
      • Approximate factorization method
  -  Numerical stability for convective terms
      • Total variation-diminishing scheme
ᲽᲽᲽᲽsmall numerical diffusion



Monte Carlo model for neutral particles

Test neutral particle D0 with a velocity v(t=0)
If ξ < νcx Δt (uniform random number 0 < ξ < 1),
   then a charge exchange occurs
         D0 + D+  →  D+ + D0

Random generation of v(t=Δt) from
   a shifted Maxwell distribution of the ion

• Accurate and easy modeling of A&M processes
• Accurate and easy treatment of vacuum region / pumping room

Reduction of MC noise in NEUT2D code
   ( larger MC noise due to small test particle number
         in smaler mesh volume near the plates )
      -  “Piling method”  ; efficient time average
      -   Massive parallel computation ; lots of test particles



3. Coupling of Impurity Monte Carlo Code

SONIC  : SOLDOR / NEUT2D / IMPMC
 IMPMC : IMPurity Monte-Carlo code

The MC approach is very
 suitable for the modeling of  

• impurity generation
• kinetic effects including
   various collisional effects
• interaction between
   impurity and wall
• complicated dissociation
   processes of methane (CD4)

Majority of integrated divertor codes employ fluid modeling
for impurities, while SONIC employs Monte Carlo modeling;

K. Shimizu1, T. Takizuka1, et al., Nucl. Fusion 49 (2009) 065028.



The MC approach, however, is disadvantageous for
• long computational time due to very short time step
• large MC noise due to restricted test particle number
• increasing large particle number in time-dependent simulation
We have solve these problems with
• new diffusion model for a scattering process
• optimization on a massive parallel computer
• particle reduction scheme

SOLDOR NEUT2D IMPMC
1 PE 31 PE 32 PE

Optimization of SONIC on a massive parallel computer



Time evolution of radiation distribution in JT-60U

S. Konoshima et al. J. Nucl. Mater. 313-316 (2003) 882.

Prdiv

Pnbi

Wdia

nGW

Prcore

D2gas

D!

A

ne

B C

6 7 8 9time (s)

15

0

P
n

b
i 
[M

W
]

W
d

ia
 [

M
J

]

0

2

P
rc

o
re

 [
M

W
]

0

5

10

g
a

s
 [

P
a

 m
3
/s

]

0

200

n
e
 [

1
0

1
9
m

-3
] 0

P
rc

o
re

 [
M

W
]

15

0

5

K. Shimizu1, T. Takizuka1, et al., Nucl. Fusion 49 (2009) 065028.

SONIC simulation reproduced fairly well the evolution of the radiation.
In the detached plasma, a part of carbons sputtered from the dome penetrate 

directly into the main plasma and contribute to the X-point MARFE.



4. Further Integration of SONIC Code 
 – Hierarchical coupling –

IMPMC

core transport
Γi, Qi, Qe

NEUT2DPWI

species-elements
          integration
             SONIC

MD simulation

TOPICS, TASK

SOLDOR

C+

EDDY

hierarchical
coupling

hierarchical
coupling

1. Coupling with
     core transport
2. Including plasma
     plasma wall interactions



5. Physics Models for the Fluid Modeling

Various physics models in fluid modeling for SOL-divertor plasmas;
      boundary condition     V// = Cs  (Bohm criterion)
      heat conductivity         q cond = - κ// ∇// T         etc

Boundary condition for V// at the divertor plate s = L, V// = Cs ,
      gives the density decay length λn

  =  (D L / 0.57Cs)1/2 .
Density at the separatrix nsep is determined from the particle flux
      Γ⊥  =  D nsep Ssep / λn ;  nsep = (L / 0.57 D Cs)1/2 Γ⊥ / Ssep .

 In other words, the value of nsep cannot be determined without
    giving a boundary condition of V// under the fluid modeling .



Fundamental Physics of  “THE PLASMA BOUNDARY OF 
MAGNETIC FUSION DEVICES”  is found in a text book 

by P.C. Stangeby (Taylor & Francis, New York)   

Part 1 An introduction to the subject of the plasma boundary
  Simple Analytic Models of the Scrape-Off Layer
  The Role and Properties of the Sheath
  Experimental Databases Relevant to Edge Physics
  Simple SOL, The Divertor SOL, Plasma Impurities
  The H-Mode and ELM, Fluctuation in the Edge Plasma
PART 2 Introduction to fluid modelling of the boundary plasma
  The 1D Fluid Equations
  1D Models for the Sheath-Limited SOL
  1D Modelling of the Conduction-Limited SOL
  ‘Onion-Skin’ Method for Modelling the SOL
  An Introduction to Standard 2D Fluid Modelling of the SOL
 

PART 3 Plasma Boundary Research
  Supersonic Flow, Flow Reversal, Divertor Detachment,
   Current in the SOL, Drift, Density, χ⊥, D⊥, MARFEs, 
  Radiatng Plasma Mantle, Zeff, Prad, Sheath, 
  Kinetic Effects, Impurity Injection



Bohm criterion for sheath formation
– Ion flow speed at the plasma-sheath boundary –

           Stable (exponential type) solution of Poisson’s equation
Electron    0 = - d(neTe)/dx + e ne dφ /dx :   ne = n0 exp (eφ/Te)
Ion            mi ni V dV /dx = - d(niTi)/dx - e ni dφ /dx ,  δ(niTi) / (niTi) = γa δni / ni

                  d(niV)/dx = 0 :   (mi V0
2 - γaTi ) dni/dx = e n0 dφ /dx

Poisson’s equation   - d2 φ / dx2 = e/ε0 ( ni - ne )
   eφ /Te = Φ , δni / n0 = Φ Te / (mi V0

2 - γaTi ) , δne / n0 = Φ , X = x / λD , λD
2 = e2

 n0 / ε0 Te

     - d2Φ / dX 
2 = {Te / (mi V0

2 - γaTi ) - 1 } Φ
          k 

2  ≡ 1 - Te / (mi V0
2 - γaTi ) ≥  0 : Φ ~ exp (k X )

          k*
2 ≡ Te / (mi V0

2 - γaTi ) - 1  ≥  0 : Φ ~ cos (k* X )  unstable (oscillatory)
solution

Stable solution  k 
2 ≥  0 :    mi V0

2 ≥ Te + γaTi    Bohm criterion



Sheath potential to keep charge neutrality
Electrons run off to the end plate faster than ions.
Electrostatic potential grows by positive charging in front of the plate.
Electrons are reflected by this sheath potential.
Electrons and ions flow into the plate equally, in steady state.

V0 =  ∫ v fe dv ≡ (2πme/Te)1/2 ∫    v exp(- mev2/Te) dv = (2πTe/me)1/2 exp(- mevc
2/Te)

∞
-vc

mevc
2 = 2 e φs

e φs /Te  =     ln (mi /2πme) -     ln (miV0
2/Te)1
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6. Particle Modeling

PARASOL code has been developed for studying
the physics of SOL and divertor plasmas.

( PARticle Advanced simulation for SOL and divertor plasmas )

Various physics models (e.g., boundary condition  V// = Cs ) are
employed in the fluid modeling for SOL-divertor plasmas.
Kinetic approach is necessary to validate such physics models.
One of the most powerful kinetic models is particle simulation
    (full f or δf, full motion or gyrokinetic).
             cf. continuum modeling
                           ∂f /∂t + v ∇r f + (qE + v × B) ∇v f  =  C( f, f ) + S

R. Cohen, X.Q. Xu, Contrib. Plasma Phys. 48 (2008) 212.
C.K. Birdsall, IEEE Trans. Plasma Sci. 19 (1991) 65.
J.P. Verboncoeur, Plasma Phys. Control. Fusion 47 (2005) A231.

T. Takizuka et al., proc. 8th IAEA Conf.,  Brussels 1980, Vol. 1  (1981) p.679.
R. Chodura, Phys. Fluids 25 (1982) 1628.
T. Takizuka et al., J. Nucl. Mater. 128-129 (1984) 104.
T. Takizuka, M. Hosokawa, Contrib. Plasma Phys. 40 (2000) 471.



T. Takizuka, M. Hosokawa, K. Shimizu, Trans. Fusion Technol.  39  (2001) 111.
T. Takizuka, M. Hosokawa, K. Shimizu, J. Nucl. Mater. 313-316 (2003) 1331.



                              Particle Motion

Collisionless motion of an ion
       mi dv/dt = e (E + v × B) + Fc

            dr/dt = v

              centrifugal force  Fc = mi (vθ2/R, -vRvθ/R, 0) 
               in the cylindrical coordinates  (R, θ, Z) and (vR, vθ, vR)

Collisionless motion of an electron guiding-center
      me dv///dt = - e E ⋅ B/B - µ ∇//B + me v// vE×B ⋅ ∇B/B
             dr/dt = v// B/B + vExB + v∇B

                magnetic moment   µ ≡ mev⊥2/2B = const.
                E × B drift           vExB = (E × B)/B2 
                curvature drift   v∇B  = (- me/2eB3) (2v//

2 + v⊥2) (∇B × B)



 mi ( vΔt/2 - v -Δt/2 ) / Δt  =  e ( E(r0) +     (vΔt/2 + v-Δt/2) × B(r0) ) + Fc     

 ( rΔt - r0 ) / Δt   =  vΔt/2 

            Fc,R =   mi (vθΔt/2 + vθ-Δt/2) vθ-Δt/2
 / 2R0

            Fc,θ = - mi (vR
Δt/2  + vR

-Δt/2) vθ-Δt/2
 / 2R0

Linearized centrifugal force
(Energy conservation)

Leap-frog method for the equation of ion motionᲽ

t = - Δt/2 t = Δt/2t = 0 t = Δt

v

t

r
E(r), B(r) 

v

1

2



Gyro motion followed by leap-frog method

 　　     　mi ( vΔt/2 - v-Δt/2 ) / Δt  =  e    ( vΔt/2 + v-Δt/2 ) × B(r0)

Energy conservation

      ( v+ - v– ) ⋅ ( v+ + v– )  =  (eΔt/2mi) { ( v+ + v– ) × B } ⋅ ( v+ + v– )
         ( v+ ) 

2  -  ( v–) 2     =     0

Small phase delay without numerical drift

     V+ - V– = (h/2) ( U+ + U– ) , U+ - U– = - (h/2) ( V+ + V– )    ( h ≡ Ω Δt )
           V+ = sin θ+ , V– = sin θ– , U+ = cos θ+ , U– = cos θ–

     sin    (θ+ - θ–)  =  (h/2) cos    (θ+ - θ–)

        θ+ - θ–  =  2 tan-1 (h/2)  ≈  Ω Δt ( 1 -     h2 )

1

2
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 me dv///dt = - e E ⋅ B/B - µ ∇//B + me v// vE×B ⋅ ∇B/B
        dr/dt = v// B/B + vExB + v∇B

Predictor-corrector method for
the equation of electron guiding center

t = - Δt/2 t = Δt/2t = 0 t = Δt

v
r

t

v*
r*

E(r*), B(r*), vdrift(r*,v*) 

E(r0), B(r0), vdrift(r0,v0) 

predictor
corrector

It is necessary to solve Poisson’s equation at t = 0 (predictor step) 
and at t = Δt/2 (corrector step), respectively.
Positions of ions, r* at t = Δt/2, are to be solved.



                           Anomalous Diffusion

Monte-Carlo random-walk model
   Spatial displacement Δranom given by Gaussian random number
                    < Δranom > = 0 ,  < Δr2

anom > = 2 Danom Δt

ᲽAmbipolar diffusion, Γi = Γe, is maintained when Danom is 
      uniform and constant for all ion and electron particles. 

Diffusion displacement at t = Δt/2 (corrector step) is  simply
    approximated as   Δranom(Δt/2) =     Δranom(Δt) .1


2



Coulomb Collisions   - Binary collision model - 
(1) In a time interval, 
  a  particle  in  a  cell 
  suffers binary colli-
  sions  with  an  ion
  and  an electron
  which  are  chosen   
  randomly  in  the 
  same  cell.

(2) Change in the
  relative  velocity
  results  from  a 
  coulomb interaction.
 

  Total  momentum
  and  total  energy
  are  conserved
  intrinsically.

Random selection of collision pairs
 

   At first;  random rearrangement of
                addresses in every cell 
                at every time step.
 
   Next ;

e

i

< !2
 > ~ "d #t

Landau collision integral

T. Takizuka, H. Abe, J. Comput. Phys.
25 (1977) 205.

like-particles ion-electron



                          Electric field   - PIC method -

Poisson’s equation and electrostatic field
          - ∇2φ = (e/ε0) (ni - ne)             Es = - ∇φ

    Density (ni and ne) is calculated with a PIC method of
    the area-weighting scheme.
           Density is assigned in inverse-proportion to
           the particle radial position, 1/R, for the cylindrical coordinates.

Boundary condition
     1D PARASOL : divertor plates at both sides
             (1) biasing   φ (-L/2) = 0  and  φ (L/2) = Δφ
             (2) current control   Δφ  =  G ∫ dt (I - Iset)

      2D toroidal PARASOL :  surrounded by the rectangular walls
             (1) conducting wall  φ = 0  on the rectangular walls



PIC method of the area-weighting scheme

x/Δ
δ 1 - δ

1 - δ δ

j j+1

1D

S3

S2S1

S4

S4S3

S1S2

2D

nj = Σ (1-δ)
nj+1 = Σ δ

Σ for particles

 E = (1-δ) Ej + δ Ej+1

for each particle

Poisson’s eq.  φj Ej = (φj-1 - φj+1)/2Δ



                                   − ∇2φ = (e/ε0) (ni - ne)

1D difference equation
　　( φj+1 - 2φj  + φj-1 ) / Δ2  =  - ρj

    cylindrical coordinates  (R, θ,  Z)Ჽ ∇2φ  →  R-1 ∂/∂R ( R ∂/∂R)
　　( Rj+1/2 φj+1 - 2Rj φj  + Rj-1/2 φj-1 ) / Rj Δ2  =  - ρj

1D difference equation (Fourier expansion in k direction)
　　( φj+1 - 2φj  + φj-1 )k / Δ2  +  ( φk+1 - 2φk  + φk-1 )j / Δ2 =  - ρj,k
　　( φj+1 - 2φj  + φj-1 )m / Δ2  -  (2πm*/L)2 φj,m  =  - ρj,m

　　　　m*
2 =  2 (1 - cos 2πmΔ/L) / (2πΔ/L)2  ≈  m2

 { 1 - (2πmΔ/L)2/12 }

Poisson Solver
Tri-diagonal Matrix Algorithm in the R direction 

Fast Fourier Transform algorithm in the Z direction



System size  L ,  Mesh size  Δ ~ λD
Particle number  N ∝ (L/λD)1,2,3 ← dimension

Characteristic time for equilibrium  L/Cs
Time steps  Kt ∝ (mi/me)1/2 (L/ λD)
Computation time   tc ∝ (mi/me)1/2 (L/ λD)2,3,4

PARASOL simulations are available to study
open-field  plasmas with smaller values of
 L/λD ~ 102-3, because characteristics are
almost unchanged by changing L/λD value
except the sheath region.

System size
Fusion plasma  L/λD > 104 ／ PARASOL plasma  L/λD < 103 

e
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By introducing the binary collision model, we can flexibly perform
PARASOL simulations at any arbitrary collisionality L// / lmfp



                Source, Heating, Cooling etc.

Hot particle source :
   Diffusive flux from core to 1D SOL central region
   Beam supply to 2D core region

Cold source : recycling near the plate
                        gas puff fueling    
RF heating and Alpha heating in the core region 
Radiative cooling in the divertor region
Momentum loss due to charge-exchange in the divertor region

         Supplied particles are finally lost to the wall.
         Supply and loss are balanced in the steady state.

a) artificial beam with temperature T0
b) realistic beam with energy Eb



Advancing time steps

(SOURCE)
r(0) & v(0) at t=0

Particle motion
     r*0(Δt/2)
     v*0(Δt/2)

Diffusion
r* = r*0 +    Δranom

Density
ne & ni  for r*1


2

Density
ne & ni  for r(0)

Poisson’s eq.
E  at t=0

Poisson’s eq.
E* at t=Δt/2

Particle motion
     r0(Δt)
     v0(Δt)

Diffusion
r(Δt) = r0(Δt) + Δranom

Collision
v(Δt) = v0(Δt) + Δvcol

Heating, Cooling and
Charge exchange
      v(Δt) ⇒ v′ (Δt)

          Loss to the wall
 YES           SOURCE
  NO    r(Δt) & v(Δt)  ⇒  r(0) & v(0)



7. PARASOL Simulation

Verification of the Bohm criterion

1D : T. Takizuka, M. Hosokawa, Contrib. Plasma Phys. 40 (2000) 471.
2D : T. Takizuka, M. Hosokawa, K. Shimizu, J. Nucl. Mater. 313-316 (2003) 1331.
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[1] A. Froese, T. Takizuka, M. Yagi, “Electron parallel heat transport in the scrape-off 
      layer using a particle-in-cell code”, to be published in Plasma Fusion Res.
[2] W. Fundamenski, Plasma Phys. Control. Fusion 47 (2005) R163.

Kinetic effect on the parallel heat transport in SOL
Collisional  lmfp << L

qe// = qSH = - κe// dTe/ds 
Collisionless  lmfp >> L
qe// = αe qFS = αe nTeveth 

0.0 0.5 x / L 
0.0

0.4

0.2T e
 / T

e0

Harmonic average model
qeff

-1 = qSH
-1

 + (αe qFS)-1

0.0 0.6 frad0.2 0.4 
0.0 

αe
0.5 

1.0 

Various αe values have been reported
from small ~0.1 to large ~1 [2].

PARASOL simulation shows that
 αe value is changed by situations;

αe increases with frad [1].

frad 

0.1

lmfp/L
 102

 10-2

frad 

0.5

lmfp/L
 103

 10-1



SOL Flow Pattern in Tokamaks

Plasma flow  in  the  SOL  plays an important role  for
the particle control in fusion reactors, such as ITER.
The  flow  is  expected  to  expel  Helium  ashes  and
to  retain  impurities  in  the  divertor  region,  if  it  is
directed  towards  the  divertor  plate.

ITER

Divertor

Bt
 Ip

Divertor

It has been experimentally observed,
however,  that  the  flow  direction  is
sometimes  opposite;  from  the  plate
side  to  the  SOL  middle  side  in  the
outer  SOL  region  (low field side)  of
tokamaks.  This  backward  flow  is
seen  when  the  single  null  point  is
located in the ion ∇B drift direction.

N. Asakura, ITPA SOL and Divertor Topical Group, J. Nucl. Mater. 363-365 (2007) 41.



Physics mechanisms of this backward flow have not fully
been known, though many simulation studies have been
carried out with the fluid model.

Kinetic simulations are considered to bring a breakthrough
on this subject. Kinetic models are able to simulate the
effects of drifts, banana particles, self-consistent electric
fields including sheath etc., which are considered to play
important roles in the SOL flow formation.

Simulation study of the SOL flow patterns
with a 2D full particle code PARASOL

T. Takizuka et al., “Two-dimensional full particle simulation of the flow
patterns in the scrape-off-layer plasma for upper- and lower- null point
divertor configurations in tokamaks”, to be published in Nucl. Fusion



2D Toroidal PARASOL simulation

(a) (b)
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Hot source

Ni0 = 106, MR x MZ = 320 x 512, mi/me = 400, ρi/a ≈ 0.02, D ≈ 10-5
 aCs ,

lmpf/L// ≈ 1, Θ = 0.2 (q is not constant for the change of A = R0/a)



SOL Flow Pattern for A = 5.5

UN : SOL flow V// towards the both diverter plates.
        Stagnation point (V// = 0) symmetric at the bottom.
LN : Backward flow pattern in the outer SOL.
        Stagnation point below the mid-plane of the outer SOL.
        Island of the backward flow in the inner SOL.

2D profile of plasma
   flow velocity V//  
     parallel to B 
  Red ; co-flow to Ip 
  Blue; counter-flow 

Upper-null point Lower-null point 



             Radial profiles of V//  for UN and LN
PARASOL simulation results (along the dotted line in former page) 
          are very similar qualitatively and quantitatively to
              the experimental results of Alcator C-Mod 
                                      ( B. LaBombard et al, Nucl. Fusion 44 (2004) 1047 )
  Cs ≈ 50 km/s (T = 30 eV) and ρB ≈ 5 mm (Ti = 100 eV, Bt = 5 T, q = 4, A = 3)

Comparison with Experiment : Similar Results
PARASOL simulation Experiment

inner SOL   outer SOL

core plasma

inner SOL outer SOL



Aspect Ratio Dependence (Θ = const.)
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Artificial Simulations without Electric Field

Flow pattern
and

Stagnation point

Full simulation
 

E = 0 simulation

When E = 0,
plasma flow is
determined only
by ion motions.
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Banana motion of trapped ions is essential for the formation 
of flow pattern in addition to the self-consistent electric field.
The effect of trapped ions can be stronger than the effect of

electric fields for the standard tokamaks with A < 5. 

Based on these PARASOL results, it is required to develop 
a model of the trapped-ion induced flow in the edge plasma 
for comprehensive divertor simulations with the fluid model.

T. Takizuka et al., “Modelling of ion kinetic effects for SOL flow formation”,
to be presented at 12th PET, Rostov, Russia, 2-4 Sep. 2009.

Subtractive relation between 
original SOL flow and banana flow

Additive relation between 
original SOL flow and banana flow

UN LN
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